The bidirectional reflectance distribution function (BRDF) is a function that defines how light from a source is reflected off an opaque surface.
Let $\displaystyle f_r(\omega_i,\omega_r)$ be the BRDF where:
$\omega$ is direction $(\theta,\phi)$
$i$ is irradiance
$r$ is radiance
$\displaystyle f_r(\omega_i,\omega_r) = \frac{\mathrm{d}L(\omega_r)}{\mathrm{d}E(\omega_i)}$
Positivity
$f_r(\omega_i,\omega_r) \geq 0$
Helmholtz reciprocity
$f_r(\omega_i,\omega_r) = f_r(\omega_r,\omega_i)$
Energy conservation
$\displaystyle \forall \omega_i, \int_{\Omega} f_r(\omega_i,\omega_r) \cos \theta_r \mathrm{d} \omega_r \leq 1$